Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

نویسندگان

  • Manuel Moliner
  • Yuriy Román-Leshkov
  • Mark E Davis
چکیده

The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Isomerization of Dihydroxyacetone to Lactic Acid and Alkyl Lactates over Hierarchical Zeolites Containing Tin

Hierarchical zeolites containing tin were obtained, characterized and used in a reaction of catalytic isomerization of dihydroxyacetone (DHA) to lactic acid and alkyl lactates. These catalysts are characterized by preserved crystallinity and primary microporosity with the simultaneous existence of secondary porosity regarding mesopores, which facilitates access of large molecules of reagents to...

متن کامل

Mechanism of glucose isomerization using a solid Lewis acid catalyst in water.

The conversion of glucose into fructose for the production of high-fructose corn syrups (HFCS) is the largest biocatalytic process in the world, and it recently has been considered as a key intermediate step in the conversion of biomass to fuels and chemicals. This reaction is typically catalyzed by an immobilized enzyme, xylose isomerase, that generates an equilibrium mixture of 42 wt% fructos...

متن کامل

Mössbauer and Magnetic Studies of Iron-Zeolite and Iron-Cobalt Zeolite Catalysts Used in Synthesis Gas Conversion

Medium-pore (diameter ~ 6A) zeolites such as ZSM-5 and silicalite impregnated with Group VIII metals provide selective catalytic pathways for the conversion of synthesis gas to gasoline or olefins. Mössbauer and magnetic studies on these catalysts containing iron or iron plus cobalt are reported. The zeolites were impregnated with metal nitrate solutions, reduced, and carbided to yield showed F...

متن کامل

Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites.

Isomerization of sugars is used in a variety of industrially relevant processes and in glycolysis. Here, we show that hydrophobic zeolite beta with framework tin or titanium Lewis acid centers isomerizes sugars, e.g., glucose, via reaction pathways that are analogous to those of metalloenzymes. Specifically, experimental and theoretical investigations reveal that glucose partitions into the zeo...

متن کامل

Modification of the properties of EU-1 and mordenite zeolites by dealumination method and investigation and comparison of their performance in xylene isomerization process

The synthesized zeolites of EU-1 and mordenite were modified via dealumination process with Nitric acid and changes of their properties including surface area, diameter, pore volume and Si/Al ratio were investigated. The catalytic performance of these two zeolites was tested and compared together in xylene isomerization process at a fixed bed reactor. The results showed that due to modification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 14  شماره 

صفحات  -

تاریخ انتشار 2010